THE BIOSYNTHESIS OF 12α-HYDROXYLATED GIBBERELLINS IN A CELL-FREE SYSTEM FROM CUCURBITA MAXIMA ENDOSPERM

PETER HEDDEN*, JAN E. GRAEBE, MICHAEL H. BEALET, PAUL GASKINT and JAKE MACMILLANT

Pflanzenphysiologisches Institut der Universität, 3400 Göttingen, Federal Republic of Germany; † A. R. C. Research Group, School of Chemistry, The University, Bristol BS8 1TS, U.K.

(Received 22 July 1983)

Key Word Index—Cucurbita maxima; Cucurbitaceae; pumpkin; biosynthesis; cell-free system; gibberellins; 12α-hydroxylation.

Abstract—A previously unknown pathway for the biosynthesis of 12α -hydroxylated gibberellins was found in a cell-free system from *Cucurbita maxima* endosperm. The microsome fraction converts the gibberellin precursor GA_{12} -aldehyde simultaneously to GA_{12} and 12α -hydroxy- GA_{12} -aldehyde. The ratio of these products is pH-dependent: above pH 6.5, the production of GA_{12} is favoured, whilst below pH 6.5, 12α -hydroxy- GA_{12} -aldehyde is the predominant product. 12α -Hydroxy- GA_{12} -aldehyde is converted further by soluble enzymes to 12α -hydroxy- GA_{14} , 12α -hydroxy- GA_{15} , 12α -hydroxy- GA_{37} and several unidentified products. This conversion is optimal between pH 6.0 and 6.5 in contrast to the previously known conversion of GA_{12} -aldehyde to GA_{43} by soluble enzymes, which is optimal at pH 7.5. GA_{58} , a major 12α -hydroxylated endogenous constituent of *C. maxima* endosperm, was not obtained when 12α -hydroxy- GA_{12} -aldehyde was used as a substrate, but it was obtained together with GA_4 when GA_9 was incubated with a preparation containing both microsomal and soluble enzymes.

INTRODUCTION

The *in vitro* biosynthesis of gibberellins (GAs) from mevalonate has previously been shown in preparations endosperm of *Cucurbita maxima L*. This biosynthesis includes the conversion of the hydrocarbon *ent*-kaurene to GA_{12} -aldehyde by a series of microsomal mono-oxygenase-catalysed oxidations [1, 2] and the further conversion of GA_{12} -aldehyde to C_{20} - and C_{19} -GAs by soluble, α -ketoglutarate-dependent dioxygenases [3–5].

Identification of the GAs occurring endogenously in C. maxima [6] showed good agreement with the products obtained in the cell-free system with one exception: several 12α -hydroxylated GAs were found as major endogenous components in the endosperm. No 12α -hydroxylated GAs were obtained as products in the cell-free system although 7β , 12α -dihydroxykaurenolide was [7]. This paper describes the biosynthesis of several of the naturally occurring 12α -hydroxylated GAs in the cell-free system under conditions that were not used in the previous studies. Some of the results have been mentioned in a symposium report [8].

RESULTS

Incubations with the microsomal system

We have previously shown that GA_{12} -aldehyde (1) is converted to GA_{12} (2) as sole product when it is incubated with the microsomal fraction from C. maxima endosperm at pH 7.5 [2]. This reaction requires NADPH. Prelimi-

*Present address: East Malling Research Station, East Malling, Maidstone, Kent ME19 6BJ, U.K.

nary experiments now showed that the same kind of incubation yields three products if it is done at pH 6.3.

In order to obtain sufficient quantities for the identification of the products, [14C]GA₁₂-aldehyde was incubated on a semi-preparative scale with the 200 000 g pellet, NADPH, magnesium chloride, phosphate buffer and ancymidol at pH 6.3. Ancymidol, which specifically inhibits the oxidation steps between ent-kaurene and ent-kaurenoic acid [9], was included to prevent the conversion of endogenous ent-kaurene and thus dilution of ¹⁴C-label in the products [7]. The products were extracted, separated by TLC and analysed by GC/MS.

The most polar product, Fraction A $(R_f 0.1, 5\%)$ of the products) was identified as GA₅₃ (3) by comparison of its mass spectrum with that of an authentic sample. The molecular ion was accompanied by an $[M+8]^+$ ion, showing that GA_{53} was ¹⁴C-labelled and thus a true product of the $[^{14}C]GA_{12}$ -aldehyde. The relative heights of $[M]^+$ and $[M+8]^+$ were the same as for the substrate, showing that no dilution of the label had occurred. Fraction B $(R_f 0.25, 29\%)$ was the major product. Its MeTMSi derivative had a molecular ion at m/z 418, corresponding to a monohydroxylated GA₁₂-aldehyde, and also showed losses of 28 and 29 amu, characteristic of an aldehyde. The mass spectrum did not correspond to those of derivatized 3β-hydroxyGA₁₂-aldehyde (GA₁₄aldehyde) [10] or 13-hydroxy-GA₁₂-aldehyde (GA₅₃-aldehyde) [11]. Since the microsomes from *C. maxima* endosperm were known to 12α -hydroxylate 7β -hydroxykaurenolide [7] and since 12α-hydroxylated GAs are present in the endosperm [6], fraction B was assumed to be 12α -hydroxy-GA₁₂-aldehyde (4). Proof for its identity will be given later, but it will be referred to henceforth by this name for convenience. Fraction C at R_f 0.4 (10 %) was identified as GA_{12} (2) and fraction D at R_f 0.7 (56%) was

570 P. Hedden et al.

shown to be unconverted GA₁₂-aldehyde (1). Like GA₅₃, the other products also contained ¹⁴C and were undiluted by endogenous products.

When GA_{12} and 12α -hydroxy- GA_{12} -aldehyde were reincubated with the $200\,000\,g$ pellet, NADPH and MgCl₂ at pH 6.3, only GA₁₂ was converted and to GA₅₃. Thus the pathway shown in Scheme 1 is proposed for the metabolism of GA12-aldehyde by the microsomal fraction at low pH. 12α-Hydroxylation occurs at the stage of GA₁₂-aldehyde, whereas GA₁₂ becomes hydroxylated at C-13. In order to determine whether 12α -hydroxylation might occur at an earlier stage yet in the biosynthetic sequence, 12α-hydroxy-[17-13C,15,17-3H]kaurenoic acid (5) was incubated with a 5000 g supernatant fraction of C. maxima endosperm. The substrate was 7β -hydroxylated in high yield to ent-7α,12β-dihydroxykaurenoic acid (6), but no ring contraction to the gibberellane skeleton occurred although the same preparation converted entkaurenoic acid to GA₁₂-aldehyde. Thus the presence of a 12α-hydroxy group prevents ring contraction and 12αhydroxylation of intermediates earlier than GA12aldehyde is of no importance in the biosynthesis of 12αhydroxylated GAs in this system.

Figure 1 shows the pH-dependence for the oxidation of GA_{12} -aldehyde by the microsomal enzymes. Above pH 7.0, the overall conversion of GA_{12} -aldehyde is high and the predominant product is GA_{12} . Below pH 6.5, the major metabolite is 12α -hydroxy- GA_{12} -aldehyde, but the total conversion is lower. The yield of 12α -hydroxy- GA_{12} -aldehyde was optimal at pH 6.0-6.5.

Some further properties of the 12α-hydroxylation were also examined. The reaction was dependent on NADPH.

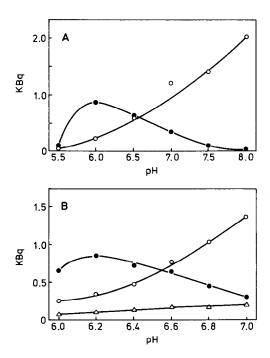


Fig. 1. Influence of pH on the microsomal conversion of GA₁₂-aldehyde to 12α-hydroxy-GA₁₂-aldehyde (●—●), GA₁₂ (○—○) and GA₅₃ (△—△). A, Only the two main products measured. B, Repeat at a different range of pH-values and with all products measured.

When GA_{12} -aldehyde was incubated with resuspended microsomes at pH 6.3 in an $^{18}O_2$ -containing atmosphere, ^{18}O was incorporated into 12α -hydroxy- GA_{12} -aldehyde as shown by GC/MS. The mass spectrum of the MeTMSi derivative contained an $[M+2]^+$ ion at m/z 420, representing the incorporation of a single ^{18}O -atom as expected. Thus the 12α -hydroxylation has features similar to those of the other microsomal monooxygenases involved in GA biosynthesis.

Incubations with the high speed supernatant system

The high speed $(200\,000\,g)$ supernatant fraction of the $C.\,maxima$ system converts GA_{12} -aldehyde (1) via several intermediates to GA_{43} (8) and GA_4 (10) as end products, the latter in low yield [4]. It seemed probable, therefore, that 12α -hydroxy- GA_{12} -aldehyde (4) would also be converted by the soluble oxidases and thus be a precursor of the 12α -hydroxylated GAs present in the endosperm [6]. Consequently, the ¹⁴C-labelled fraction B, prepared as described above, was incubated with the $200\,000\,g$ supernatant supplemented with α -ketoglutarate, ferrous sulphate and ascorbate, the cofactors known to be required for the conversion of GA_{12} -aldehyde [5]. A low pH (6.5) was chosen for this incubation, since pH-values below 7 were best for the conversion of 12α -hydroxy- GA_{12} -aldehyde in trial incubations.

Separation by TLC of the products obtained in the incubation revealed five radioactive bands. The two most polar bands at R_f 0.1 (9% of the products recovered) and R_f 0.3 (14%) were analysed by GC/MS as the MeTMSi derivatives. However, no components containing ¹⁴Clabel could be detected and the identities of these products remain unknown. The remaining three bands at R_f 0.42 (46%), 0.48 (20%) and 0.67 (11%) were methylated and rechromatographed in a different solvent system. The band at R_f 0.42 gave a single new band, which was found by GC/MS to contain 12α -hydroxy-GA₃₇ (14). This product contained 14 C-label as evidenced by an $[M+8]^+$ ion. However, the ratio of the peaks showed that it had been diluted 13 times by endogenous material. Rechromatography of the band at R_f 0.48 gave three bands in the ratio 12:7:3 in order of increasing mobility. The major component contained 12α -hydroxy- GA_{14} (9), which had been diluted three times with endogenous compound. The second band contained a single ¹⁴Clabelled component, which had been diluted to the same extent as 12α-hydroxy-GA₁₄. It gave a weak molecular ion at m/z 478, but its identity could not be determined. The third component was not detected by GC/MS. The band at R_f 0.67 gave two new radioactive bands after rechromatography of the methyl esters. Although the major component could not be detected, the minor band contained a compound with a mass spectrum identical to that of 12α-hydroxy-GA₁₅ (15), except for the ¹⁴C-isotope peaks. It had the same specific radioactivity as the substrate and was thus undiluted by endogenous material.

The fact that fraction B was converted to endogenous GAs that have been shown to be 12α -hydroxylated [6] establishes the position of hydroxylation in fraction B as 12α . This taken together with the mass spectrum defines the structure of the radioactive component in fraction B as 12α -hydroxy-GA₁₂-aldehyde (4).

GA₅₈ (11), the major endogenous C₁₉-GA in C. maxima endosperm [6, 12], was not detected in any of the fractions analysed and thus was not a product of the

incubation with 12α-hydroxy-GA₁₂-aldehyde. A possible reason for the failure to obtain GA₅₈ in the cell-free system could be the presence of endogenous GAs, such as 12α-hydroxy-GA₁₄ (9), that may be intermediates in the biosynthesis of GA₅₈ and forming pools, preventing significant incorporation of radioactivity in further metabolites. A 200 000 g supernatant was therefore filtered through Sephadex G-25 to remove all endogenous GAs and then incubated with 12α-hydroxy-[14C]GA₁₂aldehyde. A higher pH (7.0) was chosen for this incubation although it was suboptimal for the conversion of 12αhydroxy-GA₁₂-aldehyde, since it would cause less rapid closure of the δ -lactones in 12α -hydroxy-GA₁₅ (15) and 12α -hydroxy-GA₃₇ (14), which are likely intermediates in the pathway. Such lactone formation has been shown to prevent further oxidation at C-20 and thus the formation of other GAs [5,13,14].

The $200\,000\,g$ supernatant fraction after gel filtration was incubated at pH 7.0 with 12α-hydroxy-[14C]GA₁₂aldehyde, magnesium chloride, ferrous sulphate, αketoglutarate and ascorbate. After separation of the products by TLC, three radioactive bands were detected at R_f 0.40, 0.46 and 0.60 in the ratio 15:7:17. The bands at R_f 0.40 and 0.46 were found by GC/MS to contain 12 α hydroxy- GA_{37} (14) and 12α -hydroxy- GA_{14} (9), respectively, as sole ^{14}C -labelled components. There was no dilution with endogenous products this time. GC/MS analysis of the band at R_f 0.6 revealed a ¹⁴C-labelled component with $[M]^+$ at m/z 506 (accompanied by an [M]+8] ion at m/z 514). The mass spectrum also showed losses of 15, 32 and 90 amu from the ion at m/z 506, supporting its assignment as the molecular ion. Although the spectrum was characteristic of a dihydroxylated C₁₉-GA, it was different from that of GA₅₈ or any other known GA. Since it was produced from an incubation of 12α-hydroxy-GA₁₂-aldehyde, it can be assigned the structure 12 α ,X-dihydroxy-GA₉, where X is not the 3-position.

The pH-dependence for the oxidation of 12α -hydroxy-GA₁₂-aldehyde by the $200\,000\,g$ supernatant is shown in Fig. 2A. The overall conversion of substrate and incorporation into the main products, 12α -hydroxy-GA₁₄ (9) and 12α -hydroxy-GA₃₇ (14), are both optimal between pH 6.0 and 6.5. This contrasts the conversion of GA₁₂-aldehyde to GA₄₃, which is optimal between pH 7.0 and 7.5 (Fig. 2B).

Incubation with $[^2H]GA_9$

When $[^2H]GA_9$ (12) with a deuterium content of 0.92 atoms per molecule was incubated with dialysed 10 000 g supernatant preparation, $[^2H]GA_4$ (10) and $[^2H]GA_58$ (11) were formed with a deuterium content of 0.86 atoms per mol. Gibberellins A_{13} , A_{43} and A_{49} , 12α -hydroxy- GA_{14} (9), 12α -hydroxy- GA_{37} (14), 7β , 12α -dihydroxykaurenolide and ent- 6α , 7α -dihydroxykaurenolic acid were also detected by GC/MS, but all these compounds did not contain deuterium. The structures are shown in the preceding paper [6].

DISCUSSION

The conversion of GA_{12} -aldehyde (1) by microsomal preparations from C. maxima endosperm is both qualitatively and quantitatively pH-dependent. At low pH (6.0-6.5), hydroxylation at the 12α -position is favoured whereas above pH 6.5, oxidation in the 13-position

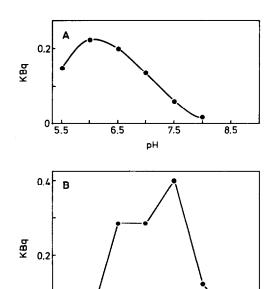


Fig. 2. Influence of pH on the conversions catalysed by the high speed supernatant fraction. A, Conversion of 12α-hydroxy-GA₁₂-aldehyde to 12α-hydroxy-GA₁₄ and 12α-hydroxy-GA₃₇ as the main products. B, Conversion of GA₁₂-aldehyde to GA₁₃ and GA₄₃ as the main products.

рΗ

7.5

6.5

predominates (Scheme 1). Above pH 7.0, 12α-hydroxylation becomes insignificant. Most probably, GA12aldehyde is the substrate for 12α-hydroxylation in vivo. Earlier intermediates cannot be considered for this role, since ring contraction does not take place when ent-12 β hydroxykaurenoic acid (5) is used as a substrate. Also GA_{12} (2) is not a substrate for 12α -hydroxylation, being instead 13-hydroxylated to GA_{53} (3). Thus GA_{12} aldehyde lies at a branch-point in the GA pathway (Scheme 1). Its immediate products, GA₁₂ and 12αhydroxy-GA₁₂-aldehyde are oxidized further by soluble oxygenases giving rise to two pathways. 12α-Hydroxy- GA_{12} -aldehyde is not oxidized to 12α -hydroxy- GA_{12} by the microsomal system, which thus is specific for GA₁₂aldehyde. The identification of GA53 (3) as a product was a surprise, since 13-hydroxylated GAs are not found in C. maxima endosperm, although small amounts of 13hydroxylated ent-kaurenoic acids are [6]. GA_{12} is rapidly oxidized by the soluble oxidases and may never reach sufficiently high concentrations in the microsomal compartment for 13-hydroxylation to be of any importance in

The conversion of 12α -hydroxy-GA₁₂-aldehyde (4) to 12α -hydroxy-GA₁₅ (15), -GA₁₄ (9), -GA₃₇ (14) and unidentified products by the $200\,000\,g$ supernatant proceeds best at low pH (6.0-7.0). This is in contrast to the conversion of GA₁₂-aldehyde (1) to GA₄₃ (8), which is optimal above pH 7.0 (Fig. 1).

The failure to obtain GA_{58} (11), the major C_{19} -GA in C. maxima endosperm is noticeable. Since 12α -hydroxy- GA_{14} and 12α -hydroxy- GA_{37} accumulate both in vivo

P. Hedden et al.

572

$$\begin{array}{c} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Scheme 1. Conversions of GA12-aldehyde by the microsomal fraction from C. maxima endosperm.

$$R^{1}$$
 R^{2} R^{1} R^{2} R^{1} R^{2} R^{1} R^{2} R^{2} R^{1} R^{2} R^{3} R^{1} R^{2} R^{3} R^{1} R^{2} R^{3} R^{2} R^{3} R^{4} R^{2} R^{4} R^{2} R^{4} R^{5} R^{5

and in vitro, they may not be intermediates on the pathway to GA_{58} . Instead GA_{58} could arise analogous to GA_4 via the open lactone form of 12α -hydroxy- GA_{15} (15) and 12α -hydroxy- GA_{36} [5, 15] (cf. Scheme 2 in ref. [6]), or it could be formed via 12α -hydroxy- GA_9 (13). In the latter case, 3β -hydroxylation would occur after the conversion to C_{19} - GA_{58} . However, we have obtained no evidence for this; the only C_{19} -GA that was produced from 12α -hydroxy- GA_{12} -aldehyde was hydroxylated other than at the 3β -position. A third alternative would be the formation of GA_{58} via GA_9 (12) as suggested by the incorporation of $[^2H]GA_9$ into GA_4 (10) and GA_{58} by a preparation containing both microsomal and soluble

components. In this case both the 3β - and the 12α -hydroxylations must have occurred at the C_{19} -stage. However, GA_9 has never been found among the products of the cell-free system, nor has it been identified as an endogenous GA in C. maxima. It is therefore possible that the conversion of GA_9 is due to nonspecific enzyme activity, not truly reflecting the metabolism in vivo. The route of formation of GA_{58} in the endosperm of C. maxima is therefore still unknown.

EXPERIMENTAL

Cell-free extracts. Fruits of field grown C. maxima, var.

Riesenmelone, gelb vernetzt' were harvested when they had reached full size but the seeds were still immature. The endosperm was removed as described in ref. [16], homogenized lightly, centrifuged at $2000 g 5 \min$ (pellet discarded) and dialysed (×3) against K-Pi (0,05 M, pH 8) with MgCl₂ (2.5 mM). The preparations were frozen on solid CO₂ as pellets and stored in liquid N₂. The defrosted preparations are referred to as the 2000 g supernatant.

Substrates. RS-[2-14C] Mevalonate (0.96 GBq/mmol) was prepared from the lactone by KOH hydrolysis. [14C]GA₁₂-aldehyde was obtained by incubation of 2000 g supernatant fraction (7 ml) with 0.5 mM [2-14C]MVA,5 mM MgCl₂, 1 mM MnCl₂,5 mM ATP,5 mM PEP and 0.5 mM NADPH in a total vol. 10 ml for 2 hr at 30°. The products were extracted and separated by TLC in solvent system 1. Purity and sp. act. were determined by GC/MS. The sp. act. was lowered by the addition of non-radioactive GA₁₂-aldehyde whenever the experiments allowed this.

ent- $[17^{-13}C,15,17^{-3}H]$ $[12\beta-Hydroxykaur-19-en-16-oic$ acid. ent-12\beta-Hydroxykaur-16-en-19-oic acid (5) (65 mg), isolated from Helianthus decapetalus [17], in THF-H2O (1:1, 12 ml) was treated with OsO₄ (1 mg) and NaIO₄ (100 mg) at room-temp. overnight. The soln was concd in in vacuo, diluted with H₂O, acidified to pH 3 and extracted with EtOAc. The gum obtained by evaporation of the organic layer was eluted through a short column of silica gel in EtOAc-petrol (7:3) to give the norketone 7 (53 mg). This norketone in pyridine (0.5 ml) was treated with TMSiCl (150 μ l) and HMDS (150 μ l) at room temp. for 2 hr. The soln was then evaporated in a stream of N2 and the residue taken up in EtOAc, filtered under N2 through a small plug of celite and evaporated. The resulting silylated norketone was treated with supernatant ylide soln (2.5 ml) prepared from P+Ph₃¹³C³H₃Br (2.46 g), NaH (638 mg of 50% oil dispersion, washed with petrol) and THF (20 ml) in the normal way [18]. After 1 hr, Me₂CO was added and the reaction mixture poured into dil. HCl and extracted with EtOAc. The wet EtOAc extract was allowed to stand for 2 days until hydrolysis of the TMSi protecting group was complete (TLC monitoring). The gum obtained by evaporation was eluted through a short column of silica gel in EtOAc-petrol (1:1). The recovered product was then partitioned between 2 M KOH and EtOAc. Acidification of the KOH-layer and recovery in EtOAc gave 12α-hydroxy-[17-13C, 15,17-3H]kaur-16-en-19-oic acid (25.5 mg, sp. act. 8.18 GBq, 90.7 atom $\frac{9}{13}$ C). [3-2H]GA₉ (0.92 ²H-atoms/mol) was prepared as described in ref. [18].

GC/MS. Methylated and trimethylsilylated samples were injected (260°) into a fused SiO₂ capillary column (WCOT, OV-101, 25 m × 0.25 mm) by the Grob splitless method. The column was maintained at 50° for 1 min, then programmed at 15°/min to 200° and at 4°/min to 260°. The He flow rate was 2 ml/min and the column effluent was lead directly into the source (290°). The electron energy was 70 eV, the emission current 0.21 mA. For the experiment with [3-2H]GA₉, a 2% SE-33 packed column was used under conditions as described in ref. [19].

Extraction and TLC of products. After incubation, the pH of the reaction mixture was adjusted to 2.5, Me₂CO was added and the products were extracted (\times 3) with EtOAc. The organic extract was washed with a little H₂O and evaporated to dryness. TLC was on silica gel in solvent systems (1) CHCl₃–EtOAC–HOAc, in (1a) (70:30:1), in (1b) (30:70:1), in (1c) (20:80:1), in (1d) (10:90:1) and (2) petrol (40–60°)–EtOAc (1:1). For GC/MS, the eluted products were methylated with ethereal CH₂N₂ and trimethylsilylated with MSTFA (90°, 30 min). When quantitative data were obtained by liquid scintillation counting of the product on silica gel, the counts were corrected for adsorption and quenching.

Incubation with microsomes at pH 6.3. A microsomal fraction

was prepared by centrifugation of the 2000 g supernatant (28 ml) at 200 000 g for 1 hr. The pellet was resuspended in 50 mM K-Pi (pH 7.5, 28 ml) with 5 mM MgCl₂ and sedimented again. The resulting pellet was resuspended in 50 mM K-Pi (pH 6.2, 15 ml), giving a final pH of 6.3. [14 C]GA₁₂-aldehyde (1) (1.2 GBq, sp. act. 5.0 GBq/mmol) in Me₂CO (25 μ l) was added to the microsomal suspension, containing 4.5 mM MgCl₂, 0.9 mM NADPH and 1.0 μ M ancymidol in a total vol of 16 ml. After incubation for 2 hr at 30°, the products were extracted, separated in solvent system 1a and identified by GC/MS of the MeTMSiderivatives as follows: Product A at R_f 0.1—GA₅₃ (3); Product B at R_f 0.25—a monohydroxy-GA₁₂-aldehyde; Product C at R_f 0.4—GA₁₂ (2) and product D at R_f 0.7—GA₁₂-aldehyde (1) (substrate).

Products B and C (0.25 nmol) were reincubated with the microsomal suspension (125 μ l) and cofactors as before. Only product B was further converted to a single product, migrating like A on TLC. To confirm the identity of this product, [14 C]GA₁₂ (3.5 nmol) was incubated with the microsomal suspension (2.0 ml) at pH 6.3. The product was identified as GA₅₃ by GC/MS.

Incubations with microsomes at different pH-values. Six aliquots (0.5 ml) of 2000 g supernatant were centrifuged at 200 000 g for 1.5 hr. The pellets were resuspended in 50 mM K-Pi (0.25 ml) at different pH-values, either between pH 5.5 and 8.0 in steps of 0.5 units or between pH 6.0 and 7.0 in steps of 0.2 units. The suspensions were incubated for 2 hr at 30° with [14C]GA₁₂-aldehyde (0.3 nmol, sp. act. ca 1.48 GBq/mmol), 5 mM MgCl₂ and 1 mM NADPH (total vol. 3 ml). The products were separated by TLC in solvent system 1a and counted by liquid scintillation on the silica gel (Fig. 1).

Incubations in the presence of $^{18}\mathrm{O}_2$. A microsomal pellet prepared as above from $2000\,g$ supernatant (4 ml) was resuspended in $50\,\mathrm{mM}$ K-Pi (pH 6.2, 2 ml), containing MgCl₂ (10 μ mol), NADPH (2 μ mol) and ancymidol (4 nmol), and freezedried. After an atmos. of $\mathrm{N_2^{-18}O_2}$ (4:1) had been introduced, degassed H₂O (1 ml) and $\mathrm{I^{14}C}]\mathrm{GA_{12}}$ -aldehyde (1) (15.8 nmol, 170 MBq/mmol) in Me₂CO (5 μ l) were injected through a rubber septum and the mixture was incubated for 3 hr at 30° in the sealed system. The products were extracted, separated and analysed by GC/MS of the MeTMSi-derivatives.

Incubation with ent-12 β -hydroxy-[17-¹³C,16,17-³H]kaur-16-en-19-oic acid. This substrate (5) (20 nmol) was added in Me₂CO (20 μ l) to a 2000 g supernatant fraction (5 ml) containing 7.5 mM MgCl₂, 1.0 mM MnCl₂, 5.0 mM ATP, 5.0 mM PEP, 0.5 mM NADPH and 50 mM K-Pi (pH 7.6) in a total vol. of 6 ml. The mixture was incubated for 2 hr at 30°. GC/MS of the extracted and derivatized products revealed ent-7 α ,12 β -dihydroxy-kaur-16-en-19-oic acid (6) as the only ¹³C-labelled component.

Incubation of 12α -hydroxy- $[^{14}C]GA_{12}$ -aldehyde with the high speed supernatant. (a) Without gel filtration. 12a-Hydroxy-[14C]GA₁₂-aldehyde (4) (15.8 nmol, 4.96 GBq/mmol) was added in MeOH (30 μ l) to the 200 000 g supernatant fraction (7.0 ml), which had been adjusted to pH 6.5 and supplemented with 5 mM α-ketoglutarate, 5 mM ascorbate and 0.5 mM FeSO₄ [5]. After incubation for 2 hr at 30°, the products were extracted and separated in solvent system 1b. Five radioactive bands were detected and eluted. The material from the two bands with the lowest R_f -values was derivatized and analysed by GC/MS directly, whereas the material from the other three bands was first methylated and rechromatographed in solvent system 2. In order of increasing R_f -values, they were resolved into one, three and two radioactive bands, respectively, which were eluted, derivatized and analysed by GC/MS. (b) With gel filtration. The 200 000 g supernatant fraction (2.2 ml) was filtered through a Sephadex G-25 column, re-equilibrated with 50 mM K-Pi

(pH 7.0), containing 2.5 mM MgCl₂, and eluted with the same buffer. Fractions absorbing at 280 and 260 nm were pooled (9 ml) and stored in liquid N_2 . 12α -Hydroxy-[14 C]GA₁₂aldehyde (5.0 nmol, 4.96 GBq/mmol) was added in MeOH (30 μ l) to the gel filtered preparation (5.0 ml), containing cofactors as before. After incubation for 2 hr at 30°, the products were extracted with EtOAc and BuOH. Chromatography of the combined extracts in solvent system 1b gave three radioactive bands, which were eluted, derivatized and analysed by GC/MS. (c) Incubation at different pH-values. Six 200 000 g supernatant aliquots (300 μ l) were supplemented with α -ketoglutarate, ascorbate and FeSO₄ to give the final concns described above in 330 µl. The pH was adjusted to different values between 5.5 and 8.0 in intervals of 0.5 units and 200 μ l of each was incubated for 1 hr at 30° with 12α-hydroxy-[14C]GA₁₂-aldehyde (4) (0.2 nmol, 4.96 GBq/mmol), added in MeOH (4 µl). Extraction and separation of the products in solvent system 1c yielded four radioactive bands from each sample, which were counted by liquid scintillation. From the large scale incubations, it was known that the most polar band contained predominantly 12α-hydroxy-GA₁₄ (9) and 12α-hydroxy-GA₃₇ (14), whereas the least polar band contained starting material (4).

Incubations of $[^{14}C]GA_{12}$ -aldehyde with the high-speed supernatant at different pH-values. Eight 200 000 g supernatant aliquots (100 μ l) were diluted 1:1 with 50 mM K-Pi at different pH values between 5.5 and 9.0 at intervals of 0.5 units. The pH of each aliquot was adjusted to the required value when necessary. Each aliquot was incubated for 15 min at 30° with $[^{14}C]GA_{12}$ -aldehyde (1) (0.5 nmol, 1.3 GBq/mmol) and 0.5 mM FeSO₄. The products were separated first with solvent system 1a to 15 cm, then with solvent system 1d to 8 cm. The major, most polar products, which are known to be GA_{13} and GA_{43} [4], were counted by liquid scintillation.

Incubation with $[3-^2H_1]GA_9$. A $10\,000\,g$ supernatant fraction (pH 7.6, 20 ml) was incubated with $[3-^2H_1]GA_9$ (12) (4.5 μ mol, 0.92 2 H-atoms/mol), 5 mM MgCl₂, 5 mM ATP, 10 mM PEP, 0.5 mM NAD and 0.1 mM FeSO₄ in a total vol. of 30 ml for 2 hr at 30°. The products were extracted and dissolved in 0.05 M K-Pi (0.8 ml, pH 8.0). Neutral lipids were extracted with petrol and discarded. Acidic components were extracted into EtOAc at pH 3. Gibberellins A_4 , A_{13} , A_{43} , A_{49} and A_{58} , 7β , 12 α -dihydroxy-kaurenolide, 12 α -hydroxy-GA₁₄, 12 α -hydroxy-GA₃₇ and ent-6 α , 7 α -dihydroxykaurenoic acid were identified by GC/MS of the MeTMSi-derivatives. Only GA₄ (10) and GA₅₈ (11) contained deuterium (0.86 atoms/mol).

Reproducibility. The formation of 12α -hydroxy- GA_{12} -aldehyde at low pH and GA_{12} at higher pH is now routinely used in our laboratory for the preparation of these compounds to be used as substrates. The orderly pH-curve was done twice with the results shown in Fig. 1. The conversion of 12α -hydroxy- GA_{12} -aldehyde was also found in numerous experiments to proceed better at low pH; the optimum was determined in two experiments, one of which is shown in Fig. 2. The pH-optimum for the

conversion of GA₁₂-aldehyde has been determined several times with identical results. All enzymes conversions were shown to be real by the use of heat denatured controls.

Acknowledgements—We thank Mrs. G. Bodtke-Owusu Boakye for skilled technical assistance and the Deutsche Forschungsgemeinschaft and the Agricultural Research Council for supporting this work.

REFERENCES

- Graebe, J. E., Bowen, D. H. and MacMillan, J. (1972) Planta 102, 261.
- Graebe, J. E. and Hedden, P. (1974) in Biochemistry and Chemistry of Plant Growth Regulators (Schreiber, K., Schütte, H. R. and Sembdner, G., eds.) p. 1. Acad. Sci. German Democratic Republic, Inst. Plant Biochem., Halle, G.D.R.
- Graebe, J. E., Hedden, P., Gaskin, P. and MacMillan, J. (1974) Phytochemistry 13, 1433.
- Graebe, J. E., Hedden, P., Gaskin, P. and MacMillan, J. (1974) Planta 120, 307.
- Hedden, P. and Graebe, J. E. (1982) J. Plant Growth Regul. 1, 105.
- Blechschmidt, S., Castel, U., Gaskin, P., Hedden, P., Graebe,
 J. E. and MacMillan, J. (1984) Phytochemistry 23, 553.
- 7. Hedden, P. and Graebe, J. E. (1981) Phytochemistry 20, 1011.
- Graebe, J. E. (1982) in *Plant Growth Substances* 1982 (Wareing, P. F., ed.) p. 71. Academic Press, London.
- Coolbaugh, R. C., Hirano, S. S. and West, C. A. (1978) Plant Physiol. 62, 571.
- Hedden, P., MacMillan, J. and Phinney, B. O. (1974) J. Chem. Soc. Perkin Trans. 1, 587.
- Down, G. J., Lee, M., MacMillan, J. and Staples, K. S. (1983)
 J. Chem. Soc. Perkin Trans. 1, 1103.
- Beale, M. H., Bearder, J. R., Hedden, P., Graebe, J. E. and MacMillan, J. (1984) Phytochemistry 23, 565.
- 13. Graebe, J. E., Hedden, P. and MacMillan, J. (1974) in Plant Growth Substances 1973, p. 260. Hirokawa, Tokyo.
- 14. Kamiya, Y. and Graebe, J. E. (1983) Phytochemistry 22, 681.
- Graebe, J. E., Hedden, P. and Rademacher, W. (1980) in Gibberellins—Chemistry, Physiology and Use, Monograph 5 (Lenton, J. R., ed.) p. 31. British Plant Growth Regulator Group, Wantage.
- Graebe, J. E. (1972) in Plant Growth Substances 1970 (Carr, D. J., ed.) p. 151. Springer, Berlin.
- Beale, M. H., Bearder, J. R., MacMillan, J., Matsuo, A. and Phinney, B. O. (1983) Phytochemistry 22, 875.
- Beale, M. H., Gaskin, P., Kirkwood, P. S. and MacMillan, J. (1980) J. Chem. Soc. Perkin Trans. 1, 885.
- Hedden, P. Phinney, B. O., Heupel, R., Fujii, D., Cohen, H., Gaskin, P., MacMillan, J. and Graebe, J. E. (1982) Phytochemistry 21, 391.